Chem. Ber. 117, 419-422 (1984)

Röntgenstruktur von Tetraphenylarsonium-tetraazidoaurat(III)¹⁾

Wolfgang Beck * und Heinrich Nöth *

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, D-8000 München 2

Eingegangen am 14. Juni 1983

X-Ray Structure Analysis of Tetraphenylarsonium Tetraazidoaurate(III)¹⁾

The title compound 1 crystallizes in the tetragonal space group P4/n with As and Au in special positions. Four nitrogen atoms surround the Au atom in a square, and the Au(N₃)₄⁻ anion adopts a whirlwind configuration. The N₃⁻ group is asymmetic (N1 – N2 122 pm, N2 – N3 115 pm), typical for covalently bound azido ligands.

Vor einigen Jahren konnten zahlreiche Azidometallat-Anionen in Form ihrer nicht explosiven Tetraphenylarsoniumsalze isoliert werden²⁾. Von Azido-Komplexen, die nur Azid als Liganden enthalten, wurden bisher $[(N_3)_2Pd(\mu-N_3)_2Pd(N_3)_2]^{2-3}$ und $[Fe(N_3)_5]^{2-4}$ röntgenographisch untersucht. Im folgenden beschreiben wir die Röntgenstruktur von AsPh₄[Au(N₃)₄] (1), das als lichtempfindliche Verbindung (Bildung von AsPh₄[Au(N₃)₂]) aus AuCl₄^{-/N₃} und Fällen mit AsPh₄Cl erhalten wurde²⁾.

$$\begin{bmatrix} As(C_6H_5)_4 \end{bmatrix} \begin{bmatrix} Au(N_3)_4 \end{bmatrix} \quad M - \overline{N}^{\sim N} \stackrel{\geq Ni}{=} \stackrel{N}{=} 1$$

1 kristallisiert tetragonal in der Raumgruppe P4/n mit Z = 1. Durch das Goldatom geht eine vierzählige kristallographische Achse. Es ist praktisch planar quadratisch von vier N-Atomen umgeben; von der durch die N1-Atome aufgespannten Ebene ist das Au-Atom nur 2.7 pm entfernt, die N2- und N3-Atome liegen auf der anderen Seite dieser Ebene mit Abständen von 18.4 und 29.4 pm. Alle vier Azidliganden sind aus der Koordinationsebene AuN₄ nach einer Seite herausgedreht. Damit resultiert die Struktur eines "Windrades" (vgl. Abb. 1), die früher aus IR-spektroskopischen Daten wahrscheinlich erschien²⁾. Ein analoges Herausdrehen wurde auch für die endständigen Azidliganden von $[Pd_2(N_3)_6]^{2-3}$ beobachtet und ist wahrscheinlich auf Packungseffekte und weniger auf eine M-N- π -Bindung mit Azid als π -Donor zurückzuführen. Ebenso wurde bei $C(N_3)_3^+$ und bei aromatischen organischen Aziden eine Neigung der N₃-Gruppen gegen die Ebene des π -Systems festgestellt⁵⁾. Wie für kovalent gebundenes Azid entsprechend 2 zu erwarten⁵⁾, sind die NN-Abstände in den Azidliganden ungleich lang (Tab. 1); ferner sind sie nicht völlig linear angeordnet. Tatsächlich werden bei Aziden mit kovalenter Bindung an ein Metallatom oder einen organischen Rest häufig N1 - N2 - N3-Winkel um 170° gefunden⁵⁾. Der Au-N-Abstand entspricht dem Wert für $[Pd_2(N_3)_6]^{2-}$ (Pd-N 201 pm³), der Winkel Au - N1 - N2 dem in $[Ru(N_2)en_2N_3]^+$ (Ru - N - N 116.7°6). Im Kristall von 1 (Abb. 2) sind die Au(N₃)₄-Anionen durch die AsPh₄-Kationen getrennt; dies erklärt die relativ große thermische Stabilität von 1.

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/0101 – 0419 \$ 02.50/0

Abb. 1. Struktur von 1; Blick auf die a/b-Ebene

Abb. 2. Struktur von 1; Packung der Au(N₃)₄-Anionen und der Ph₄As-Ionen. H-Atome wurden der Übersichtlichkeit wegen weggelassen. Blickrichtung ist die *b*-Achse

Tab. 1. Bindungsabstände und -winkel von $Ph_4As[Au(N_3)_4]$	1)	1
--	----	---

pm			Grad	
Au – N1	202.8(16)	N1 - Au - N1'	89.3(7)	
N1 - N2	122.2(30)	Au - N1 - N2	116.2(14)	
N2 – N3	114.8(31)	N1 - N2 - N3	171.9(23)	
As-C6	189.8(10)	C6-As-C6'	111.6(3)	

Herrn Dr. U. Nagel danken wir für Diskussionen, Herrn M. Steimann für experimentelle Mitarbeit.

Experimenteller Teil

1 wurde wie früher beschrieben²⁾ durch Umsetzung von K[AuCl₄] und NaN₃ in wäßriger Lösung und Fällen mit AsPh₄Cl erhalten und aus Dichlormethan/Petrolether umkristallisiert. – IR (KBr): 2020 ($v_{as}N_3$), 1248 (v_sN_3) cm⁻¹. 1 unterscheidet sich von AsPh₄[Au(N₃)₂] durch die intensive $v_s(N_3)$ -Bande, die beim Gold(I)-Komplex (1282 cm⁻¹) schwächer auftritt. *Röntgenstrukturanalyse:* Ein blättchenförmiger Einkristall $(0.3 \times 0.3 \times 0.08 \text{ mm})$ wurde in einem Lindemann-Röhrchen fixiert. Nach optischer Justierung dienten 12 der Rotationsaufnahme entnommenen Reflexe zur ersten Festlegung der Elementarzelle, deren endgültige Parameter durch Zentrieren von 23 Reflexen im Bereich $24 < 2\Theta < 36^{\circ}$ mittels Kleinster Quadrate-Rechnung zu a = b = 13.222(2), c = 7.679(1) Å der tetragonalen Zelle, V = 1342.45(23) Å³, berechnet wurde. Linearer Absorptionskoeffizient $\mu = 67.26$ cm⁻¹, F(000) 719.71.

Die Datensammlung im $\omega/2\Theta$ -Scan erfolgte mit graphitmonochromatisierter Mo- K_{α} -Strahlung im Bereich 2.5 $< 2\Theta < 50^{\circ}$ mit h, k, $\pm l$. Nach je 48 Reflexen wurden zwei Standardreflexe gemessen. Die Meßbreite betrug 1°, desgleichen die Untergrundmessung (1:1); die Meßgeschwindigkeit variierte von 1.7 – 29.3 °/min im Bereich 150 – 2500 counts/s. Die Variation der Intensitäten ($\approx 12\%$) zeigte Zersetzung des Kristalls während Datensammlung an. Die Intensitäten der gemessenen Reflexe wurden sowohl aufgrund dieser Variation als auch die Absorption empirisch durch w-Scan korrigiert. Nach Datenreduktion standen 2591 Intensitäten zur Strukturlösung zur Verfügung, nach Mittelung 1084 F_0 aus symmetrieunabhängigen Reflexen. Systematische Auslöschungen in hk0 mit h + k = 2n führt zu den Raumgruppen P4 (Z = 2) und P4/n (Z = 1). Die Strukturlösung erfolgte in P4/n. Die speziellen Au- und As-Lagen ergaben sich aus einer Patterson-Synthese und waren für Z = 1 zu fordern; die Positionen aller übrigen Nichtwasserstoffatome waren einer Differenz-Fourier-Synthese zu entnehmen. Nach Verfeinerung mit isotropen Temperaturparametern mit idealen Sechsringkoordinaten für den Phenylring wurden Au, As sowie N1 - N3 in der weiteren Verfeinerung mit anisotropen Temperaturparametern einbezogen. Die Positionen der H-Atome (C - H-Abstand 96 pm) wurden berechnet und in die abschließende Verfeinerung mit fixiertem $U_i = 0.07$ (45 Parameter; Reflexe: Parameter = 24:1) berücksichtigt. Die Rechnung konvergierte bei R = 0.0956, $R_w = 0.0964$ ($R_w = \sum ||F_o| - |F_c|| \sqrt{w} / \sum |F_o| \sqrt{w}$ mit $w = (\sigma^2 (F_0) + 0.0006 F_0^2)^{-1})$. Ortskoordinaten und U_{eq} -Werte finden sich in Tab. 2, U_{ir} Werte und die Lagen der H-Atome können zusammen mit zusätzlichen Informationen zur Strukturbestimmung abgerufen werden⁷⁾.

x/a	y/b	z/c	U
1/4	1/4	.21065(16)	.0422(4)
.31692(118)	.11200(118)	.21447(289)	.072(6)
.40823(192)	.11077(159)	.19002(207)	.081(8)
.49379(131)	.09856(143)	.17586(293)	.079(7)
1/4	3/4	0	.0381(6)
			U,
. 14786(85)	.84176(68)	.28449(139)	.056(4)
.12343(85)	.91948(68)	.39990(138)	.058(4)
.16770(85)	1.01460(68)	.38075(138)	.061(4)
.23641(85)	1.03199(68)	.24618(138)	.070(5)
.26084(85)	.95427(68)	.13076(138)	.052(4)
.21657(85)	.85915(68)	.14982(138)	.043(3)
	x/a 1/4 . 31692(118) . 40823(192) . 49379(131) 1/4 . 14786(85) . 12343(85) . 16770(85) . 23641(85) . 26084(85) . 21657(85)	x/a y/b 1/4 1/4 .31692(118) .11200(118) .40823(192) .11077(159) .49379(131) .09856(143) 1/4 .3/4 .147.86(85) .84176(68) .1234.3(85) .91948(68) .16770(85) 1.01460(68) .23641(85) .95427(68) .26084(85) .85915(68)	x/a y/b z/c 1/4 1/4 .21065(16) .31692(118) .11200(118) .21447(289) .40823(192) .11077(159) .19002(207) .49379(131) .09856(143) .17586(293) 1/4 3/4 0 .147.86(85) .84176(68) .28449(139) .1234.3(85) .9194.8(68) .39990(138) .16770(85) 1.01460(68) .38075(138) .2364.1(85) 1.03199(68) .24618(138) .26084(85) .95427(68) .13076(138) .21657(85) .85915(68) .14982(138)

Tab. 2. Atomkoordinaten und U_{eq} bzw. U_i -Werte der Temperaturparameter von Ph₄As-[Au(N₃)₄] (1). Für Au und As gilt der Besetzungsfaktor 1/4

- ¹⁾ LXII. Mitteilung über Pseudohalogenometallverbindungen; LXI. Mitteil.: J. Erbe und W. Beck, Chem. Ber. 116, 3867 (1983).
- ²⁾ W. Beck, W. P. Fehlhammer, P. Pöllmann, E. Schuierer und K. Feldl, Chem. Ber. 100, 2335 (1967).
- ³⁾ W. P. Fehlhammer und L. F. Dahl, J. Am. Chem. Soc. 94, 3377 (1972).
- 4) J. Drummond und J. S. Wood, Chem. Commun. 1969, 1373.
- ⁵⁾ Review: U. Müller, Struct. Bonding (Berlin) 14, 141 (1973); Z. Dori und R. F. Ziolo, Chem. Rev. 73, 247 (1973).
- ⁶⁾ B. R. Davis und J. A. Ibers, Inorg. Chem. 9, 2768 (1970).
- ⁷⁾ Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50542, des Autors und des Zeitschriftenzitats angefordert werden.

[205/83]